62 research outputs found

    Exceptionally monotone models : the rank correlation model class for exceptional model mining

    Get PDF
    Exceptional Model Mining strives to find coherent subgroups of the dataset where multiple target attributes interact in an unusual way. One instance of such an investigated form of interaction is Pearson's correlation coefficient between two targets. EMM then finds subgroups with an exceptionally linear relation between the targets. In this paper, we enrich the EMM toolbox by developing the more general rank correlation model class. We find subgroups with an exceptionally monotone relation between the targets. Apart from catering for this richer set of relations, the rank correlation model class does not necessarily require the assumption of target normality, which is implicitly invoked in the Pearson's correlation model class. Furthermore, it is less sensitive to outliers

    Interpretable domain adaptation via optimization over the Stiefel manifold

    Get PDF
    In domain adaptation, the goal is to find common ground between two, potentially differently distributed, data sets. By finding common concepts present in two sets of words pertaining to different domains, one could leverage the performance of a classifier for one domain for use on the other domain. We propose a solution to the domain adaptation task, by efficiently solving an optimization problem through Stochastic Gradient Descent. We provide update rules that allow us to run Stochastic Gradient Descent directly on a matrix manifold: the steps compel the solution to stay on the Stiefel manifold. This manifold encompasses projection matrices of word vectors onto low-dimensional latent feature representations, which allows us to interpret the results: the rotation magnitude of the word vector projection for a given word corresponds to the importance of that word towards making the adaptation. Beyond this interpretability benefit, experiments show that the Stiefel manifold method performs better than state-of-the-art methods

    How to cheat the page limit

    Get PDF
    Every conference imposing a limit on the length of submissions must deal with the problem of page limit cheating: authors tweaking the parameters of the game such that they can squeeze more content into their paper. We claim that this problem is endemic, although we lack the data to formally prove this. Instead, this paper provides a far from exhaustive summary of ways to cheat the page limit, a case study involving the papers accepted for the Research and Applied Data Science tracks at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD) 2019, and a discussion of ways for program chairs to tackle this problem. Of the 130 accepted papers in these two ECMLPKDD 2019 tracks, 68 satisfied the page limit; 62 (47.7%) turned out to spill over the page limit, by up to as much as 50%. To misappropriate a phrase from Darrell Huff's “How to Lie with Statistics,” we intend for this paper not to be a manual for swindlers; instead, nefarious paper authors already know these tricks, and honest program chairs must learn them in self-defense. This article is categorized under: Commercial, Legal, and Ethical Issues > Fairness in Data Mining

    Subjectively Interesting Subgroup Discovery on Real-valued Targets

    Get PDF
    Deriving insights from high-dimensional data is one of the core problems in data mining. The difficulty mainly stems from the fact that there are exponentially many variable combinations to potentially consider, and there are infinitely many if we consider weighted combinations, even for linear combinations. Hence, an obvious question is whether we can automate the search for interesting patterns and visualizations. In this paper, we consider the setting where a user wants to learn as efficiently as possible about real-valued attributes. For example, to understand the distribution of crime rates in different geographic areas in terms of other (numerical, ordinal and/or categorical) variables that describe the areas. We introduce a method to find subgroups in the data that are maximally informative (in the formal Information Theoretic sense) with respect to a single or set of real-valued target attributes. The subgroup descriptions are in terms of a succinct set of arbitrarily-typed other attributes. The approach is based on the Subjective Interestingness framework FORSIED to enable the use of prior knowledge when finding most informative non-redundant patterns, and hence the method also supports iterative data mining.Comment: 12 pages, 10 figures, 2 tables, conference submissio

    Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling

    Get PDF
    Collective social media provides a vast amount of geo-tagged social posts, which contain various records on spatio-temporal behavior. Modeling spatio-temporal behavior on collective social media is an important task for applications like tourism recommendation, location prediction and urban planning. Properly accomplishing this task requires a model that allows for diverse behavioral patterns on each of the three aspects: spatial location, time, and text. In this paper, we address the following question: how to find representative subgroups of social posts, for which the spatio-temporal behavioral patterns are substantially different from the behavioral patterns in the whole dataset? Selection and evaluation are the two challenging problems for finding the exceptional subgroups. To address these problems, we propose BNPM: a Bayesian non-parametric model, to model spatio-temporal behavior and infer the exceptionality of social posts in subgroups. By training BNPM on a large amount of randomly sampled subgroups, we can get the global distribution of behavioral patterns. For each given subgroup of social posts, its posterior distribution can be inferred by BNPM. By comparing the posterior distribution with the global distribution, we can quantify the exceptionality of each given subgroup. The exceptionality scores are used to guide the search process within the exceptional model mining framework to automatically discover the exceptional subgroups. Various experiments are conducted to evaluate the effectiveness and efficiency of our method. On four real-world datasets our method discovers subgroups coinciding with events, subgroups distinguishing professionals from tourists, and subgroups whose consistent exceptionality can only be truly appreciated by combining exceptional spatio-temporal and exceptional textual behavior

    Adversarial balancing-based representation learning for causal effect inference with observational data

    Get PDF
    Learning causal effects from observational data greatly benefits a variety of domains such as health care, education, and sociology. For instance, one could estimate the impact of a new drug on specific individuals to assist clinical planning and improve the survival rate. In this paper, we focus on studying the problem of estimating the Conditional Average Treatment Effect (CATE) from observational data. The challenges for this problem are two-fold: on the one hand, we have to derive a causal estimator to estimate the causal quantity from observational data, in the presence of confounding bias; on the other hand, we have to deal with the identification of the CATE when the distributions of covariates over the treatment group units and the control units are imbalanced. To overcome these challenges, we propose a neural network framework called Adversarial Balancing-based representation learning for Causal Effect Inference (ABCEI), based on recent advances in representation learning. To ensure the identification of the CATE, ABCEI uses adversarial learning to balance the distributions of covariates in the treatment and the control group in the latent representation space, without any assumptions on the form of the treatment selection/assignment function. In addition, during the representation learning and balancing process, highly predictive information from the original covariate space might be lost. ABCEI can tackle this information loss problem by preserving useful information for predicting causal effects under the regularization of a mutual information estimator. The experimental results show that ABCEI is robust against treatment selection bias, and matches/outperforms the state-of-the-art approaches. Our experiments show promising results on several datasets, encompassing several health care (and other) domains

    Discovering a taste for the unusual: exceptional models for preference mining

    Get PDF
    Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes exceptional' varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under Grant Agreement Number 662189-MANTIS-2014-1
    corecore